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Toward phenanthridin-2-ylidene: electrophilicity versus acidity
in planar-constrained C-aryl iminium salts
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Abstract—A phenanthridinium salt was prepared in four steps, including an intramolecular CH-arylation and a hydride abstraction
reaction. Treatment with sterically demanding bases does not lead to the corresponding carbene, but rather to addition products: the
planar-constrained geometry significantly enhances the electrophilicity over the acidity of C-aryl iminium salts.
� 2005 Elsevier Ltd. All rights reserved.
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Figure 1. Known types of stable carbenes and generic formulae of
CAArCs (I).
Since the isolation of the first singlet carbenes A1 and B,2

the number and variety of available stable or at least
persistent carbenes have considerably increased.3 We
have demonstrated that the presence of a single hetero-
atom substituent brings substantial stabilization since
various acyclic aryl- and alkyl-carbenes C–F have been
characterized or even isolated using an amino or a phos-
phino group as an electron-donating substituent
(Fig. 1).4 However, among all of the carbenes A–F, only
the �pure� r-donor cyclic diaminocarbenes (NHCs),
when used as ligands, have led to highly active and
robust catalysts.5 Free acyclic carbenes, which include
diaminocarbenes G6 are not only more fragile than
NHCs, but the ensuing complexes are also less robust.
Herrmann has recently suggested that the poor coordi-
nation behavior of acyclic diamino carbenes might be
due to the larger N–C–N angle (121� compared to
101–106� for NHCs).7 Along this line, we have recently
demonstrated that in contrast to their acyclic versions
F,4f cyclic amino alkyl carbenes (CAACs) H are strong
r-donors, and weak p-acceptors, and form highly cata-
lytically active and robust complexes.8 The latter results
prompted us to investigate the related cyclic amino aryl
carbenes (CAArCs) I, and here we report surprising and
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informative results obtained during their attempted
preparation.

Since the acyclic amino aryl carbene E14b (Fig. 2), which
features the chemically inert and sterically hindered
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Figure 2. Design of the planar-constrained amino-aryl-carbene I2.
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2,6-bis(trifluoromethyl)phenyl group is quite stable, and
easily obtained by deprotonation of the corresponding
iminium salt, we envisioned the linkage of one of the
ring ortho position to the amino substituent, such as in
the isoquinolin-2-ylidene I1. Taking into account that
abnormal deprotonations might occur from the corre-
sponding isoquinolinium precursor,9,10 a tert-butyl
group was introduced at the nitrogen and the ethenyl
linker was replaced by a phenyl ring, so that the phenan-
thridin-2-ylidene I211 was chosen as the target
compound.

The required phenanthridinium precursor 5 was
prepared in four steps in 42% overall yield (Scheme 1).
Condensation of the (2-bromo-4-tert-butylphenyl)-tert-
butylamine 112 with 2-trifluoromethylbenzoyl chloride
first led to the corresponding amide 2, which was sub-
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Scheme 1. Four-step synthesis of phenanthridinium salt 5. Reagents and co
62%; (ii) Pd(OAc)2 (5 mol %), dppp (5 mol %), Bu3P (10 mol %), EtNi-Pr2,
CH2Cl2, �78 �C, 0.5 h, 90%.
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Scheme 2. Attempted deprotonations of phenanthridinium 5.
sequently cyclized via an intramolecular Pd-catalyzed
CH-arylation reaction.13 Reduction of the resulting lac-
tam 3 with LiAlH4 afforded the dihydrophenanthridine
4, and hydride abstraction with triphenylmethyl trifluo-
romethanesulfonate finally led to the desired phenanth-
ridinium salt 5.14 Notably, the chemical shift for the
acidic proton of 5 (9.91 ppm) is in the same range as
those of unconstrained C-aryl iminium salts (9.7–
10.2 ppm), whereas the signal of the corresponding
carbon atom is significantly shielded (148.0 ppm for 5
compared to 170–175 ppm).4b,e

Deprotonation of the phenanthridinium salt 5 was then
investigated with sterically hindered bases (Scheme 2).15

Using sodium tert-butoxide, the N,O-acetal 6 was quan-
titatively obtained, as deduced from the typical signals
observed for the CH group at 6.39 and 75.7 ppm in
1H and 13C NMR, respectively. A similar addition reac-
tion also occurred with lithium hexamethyldisilazane,
despite the severe steric hindrance in the resulting com-
pound 7. From a mechanistic viewpoint, the formation
of adducts 6 and 7 may result from direct nucleophilic
addition to the phenanthridinium salt 5, or alternatively
from deprotonation of 5 leading to the carbene followed
by an OH or NH insertion reaction, respectively, as
already observed.4e The putative CAArC was not
detected when the reactions of 5 with t-BuONa and
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LiHMDS were monitored by NMR at �78 �C. To defin-
itively rule out the transient formation of the carbene,
we used a sterically hindered base, whose conjugate acid
is not prone to insertion reactions.16 Mesityl lithium
readily reacted with 5 at �78 �C, and the resulting
adducts 8 and 8 0, obtained in a 4/6 ratio, were character-
ized by mass spectrometry, 1H, and 19F NMR spectro-
scopy. The minor product 8 is related to compounds 6
and 7, whereas the major product 8 0 results from conju-
gated nucleophilic addition with dearomatization of the
planar-constrained aryl ring.17 As a result of its quinonic
structure, compound 8 0 proved to be rather unstable and
could not be isolated.

From these results, it is clear that nucleophilic addition
is strongly favored over deprotonation in the reaction of
5 with sterically demanding bases. Note that the electron
withdrawing CF3 group would be anticipated to
enhance both the electrophilicity and acidity of 5. We
have verified that no significant modifications in the fate
of the reactions occurred by replacing the CF3 group by
an electron-donating CH3 group, since the addition
product analogous to 7 was quantitatively obtained with
LiHMDS.18

This peculiar behavior of the phenanthridinium salt 5
compared to the corresponding acyclic iminium salts
might result from both steric and electronic factors.
Indeed, the constrained geometry of 5 not only mini-
mizes steric interactions with approaching nucleophiles,
but also enhances its electrophilicity by enforcing the
p-conjugation of the iminium fragment with the aryl
ring, and thereby lowering the LUMO energy. In con-
trast, for the corresponding acyclic carbene E1 and its
iminium precursor,4b the p-system of the aromatic ring
is perpendicular to the CN p-bond.

In conclusion, the phenanthridinium salt 5 is not a suit-
able precursor for cyclic amino-aryl carbene I2 due to
the planar-constrained geometry of 5, which favors
nucleophilic addition over deprotonation, even with
sterically demanding bases. This is a strong indication
that CAArCs are not obtainable by the classical depro-
tonation route. The preparation of free cyclic amino
aryl carbenes using other potential precursors, as well
as the direct synthesis of transition metal complexes
featuring CAArCs as ligands19,20 is under active inves-
tigation in order to investigate the influence of the geo-
metric constraints on the coordination properties of
CAArCs, and on the catalytic activity of the ensuing
complexes.
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Gornitzka, H.; Miqueu, K.; Bourissou, D.; Bertrand, G. J.
Org. Chem. 2003, 68, 911.

10. A few imidazolium salts were reported to bind via C5
rather than C2 to transition metals: (a) Gründemann, S.;
Kovacevic, A.; Albrecht, M.; Faller, J. W.; Crabtree, R.
H. Chem. Commun. 2001, 2274; (b) Chianese, A. R.;
Kovacevic, A.; Zeglis, B. M.; Faller, J. W.; Crabtree, R. H.
Organometallics 2004, 23, 2461, and references cited
therein.

11. Similar carbenes have been postulated as intermediates in
the air oxidation of quinolium salts to quinolones in the
presence of bases, see: Grignon-Dubois, M.; Meola, A.
Synth. Commun. 1995, 25, 2999.

12. Marx, L.; Rassat, A. Tetrahedron Lett. 2002, 2613.
13. (a) Harayama, T.; Akiyama, T.; Nakano, Y.; Shibaike, K.

Heterocycles 1998, 48, 1989; (b) Harayama, T.; Akiyama,
T.; Nakano, Y. Chem. Pharm. Bull. 1997, 45, 1723.

14. For the synthesis of a related anhydrolycorinium salt by
oxidation of the corresponding anhydrolycorinone, see:
Boger, D. L.; Wolkenberg, S. E. J. Org. Chem. 2000, 65,
9120.

15. Fifty-five milligrams of the phenanthridinium trifluorom-
ethanesulfonate 5 (0.11 mmol) was suspended in 0.3 mL of
THF-d8 at �78 �C in an NMR tube. A solution of the base
(0.11 mmol) in 0.4 mL of THF-d8 at �78 �C was slowly
added. The tube was shaken until complete dissolution,
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